Перевод: с русского на все языки

со всех языков на русский

конкретной величины

  • 1 мера величины влажности

    1. Massverkorperung der Feuchte

     

    мера величины влажности
    мера влажности

    Средство измерений, воспроизводящее заданное значение какой-либо величины влажности с необходимой точностью.
    Примечание
    В этом термине вместо общего элемента «величина влажности» следует применять наименование конкретной величины, например «мера относительной влажности».
    [РМГ 75-2004]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > мера величины влажности

  • 2 мера величины влажности

    1. material measure of moisture

     

    мера величины влажности
    мера влажности

    Средство измерений, воспроизводящее заданное значение какой-либо величины влажности с необходимой точностью.
    Примечание
    В этом термине вместо общего элемента «величина влажности» следует применять наименование конкретной величины, например «мера относительной влажности».
    [РМГ 75-2004]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > мера величины влажности

  • 3 мера величины влажности

    1. mesure materialisee de la humidite

     

    мера величины влажности
    мера влажности

    Средство измерений, воспроизводящее заданное значение какой-либо величины влажности с необходимой точностью.
    Примечание
    В этом термине вместо общего элемента «величина влажности» следует применять наименование конкретной величины, например «мера относительной влажности».
    [РМГ 75-2004]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > мера величины влажности

  • 4 установка

    1) General subject: adjustment, aligner, arrangement, assembling, assembly, bump-in, establishment, fitting, fixing (предмета), guidepost, installation, line, mounting, orientation, placing, plant, policy, prescription, set, setting, setup, directive, precept, tenet
    2) Geology: positioning
    3) Aviation: deadheading, rigging up
    6) Sports: stance
    8) Engineering: complex, device, erecting work, erection, erection (машины), erection work, fixing, gear, incorporation, installation process, level (технологического параметра), machine (производственная), outfit, placement, range, rig, rigging, set-in, setup (регулируемой величины), site, startup, system
    11) Mathematics: aim, (детали на станок) loading, purpose, set (up)
    16) Automobile industry: making-ready, refitting, unit (величины)
    17) Architecture: (технологическая) plant
    19) Diplomatic term: philosophy
    20) Cinema: mental set
    21) Forestry: assemblage, manifold, mill, planting
    22) Metallurgy: contrivance
    24) Psychology: (психологическая) attitude, mindset
    27) Information technology: install, set point, setting movement, situation
    28) Oil: aggregate, equipment, holddown, installation (оборудования), landing (колонны труб в скважине), lay down, mounting (процесс), positioned operation, seating, setting up, setting-up, seek
    29) Special term: tube
    32) Mechanic engineering: set hands square
    33) Metrology: console, packaging
    34) Mechanics: setting-out
    35) Coolers: work
    36) Ecology: mechanism, processor
    37) Advertising: target
    38) Business: operation
    40) Production: production plant
    41) Microelectronics: tool
    42) Solar energy: utility
    43) Programming: (принудительная) coercion
    45) Quality control: bed, setup (заданной величины), station
    46) Plastics: making true
    51) Aviation medicine: disposition, preparatory set
    52) Psychoanalysis: suggestion (в гипнозе)
    53) Makarov: adjustment (процесс), adjustment (регулировка), adjustment (регулировка величины по прибору), app (apparatus), apparatus (устройство, прибор), assembly (процесс сборки, монтажа), erection (напр., машины), erection (процесс сборки, монтажа), facility (устройство, прибор), fit, fit (в проектное положение), fitting-up, fixation, frame, framework, installation (оборудование), installation (производственная), installation (процесс), installation (процесс сборки, монтажа), installation (устройство, прибор), interposition, maker, mounting (процесс сборки, монтажа), plant (агрегат), plant (в зависимости от производства, получения какого-л. продукта, материала и т.п.), plant (устройство, прибор), set (агрегат), set-up (конкретной величины), setting (конкретной величины), stage (процесс), unit (агрегат), unit (устройство, прибор)
    55) Gold mining: setup (приборов и т.д.)
    56) SAP.tech. fetching
    58) Combustion gas turbines: setting (чего-л.)

    Универсальный русско-английский словарь > установка

  • 5 установка

    adjustment, apparatus, arrangement, array геофиз., complex, configuration, device, erection, facility, fitting, mill, gear, incorporation, insertion электрон., installation, layout, mount, mounting, outfit, placement, plant, rig, rigging, set, set-in, setting, setup, site, system, unit
    * * *
    устано́вка ж.
    1. ( оборудование) installation; ( агрегат) plant, set; (в зависимости от производства, получения какого-л. продукта, материала и т. п.) plant
    2. (процесс сборки, монтажа) installation, erection, mounting, assembly
    абсорбцио́нная устано́вка — absorption plant, absorption unit
    устано́вка авари́йного пита́ния — emergency power supply unit
    агломери́рующая устано́вка — sintering plant
    бо́йлерная устано́вка — heating-water converter plant
    бурова́я устано́вка — drilling rig
    быстрозамора́живающая устано́вка — quick-freeze plant
    устано́вка валко́в — roll adjustment; roll setting
    ветроэнергети́ческая устано́вка — wind-driven electric plant
    винтомото́рная устано́вка ав.power plant
    водоподготови́тельная устано́вка — water-treatment system
    водоумягчи́тельная устано́вка — water softener
    возду́шно-трелё́вочная устано́вка — flying machine, aerial skidder
    вулканизацио́нная устано́вка — vulcanizing plant
    выпарна́я устано́вка — evaporator system
    выпарна́я, многоко́рпусная устано́вка — multiple-effect evaporator battery, multiple-effect evaporator system
    выпарна́я, одноко́рпусная устано́вка — single-effect evaporator system
    выпарна́я, прямото́чная устано́вка — forward-feed evaporator battery, forward-feed evaporator system
    выпарна́я устано́вка с паралле́льным пита́нием — parallel-feed evaporator battery, parallel-feed evaporator system
    выпарна́я устано́вка с паралле́льным то́ком ( не путать с устано́вкой паралле́льного пита́ния) — forward-feed evaporator battery, forward-feed system (not to be confused with a parallel-feed system)
    выпарна́я устано́вка с противото́ком — backward-feed evaporator battery, backward-feed evaporator system
    устано́вка высотоме́ра ав.altimeter setting
    устано́вка высотоме́ра по давле́нию на аэродро́ме ав.QFE setting
    устано́вка высотоме́ра по давле́нию на у́ровне мо́ря — QNH setting
    газогенера́торная устано́вка — gas generator, gas-generating plant
    газотурби́нная устано́вка — gas-turbine plant
    генера́торная устано́вка — generating plant, generating set
    гидрогенизацио́нная устано́вка — hydrogenation unit
    гидросилова́я устано́вка — water-power plant
    гребна́я устано́вка мор.propulsion plant
    дви́гательная устано́вка — propulsion system, power plant, power unit
    дви́гательная, турби́нная устано́вка — turbine propulsion unit
    дегазацио́нная устано́вка — decontamination plant
    дезинфекцио́нно-душева́я устано́вка — disinfecting shower unit
    ди́зельная устано́вка — diesel (engine) plant
    ди́зель-электри́ческая устано́вка — diesel-electric plant
    устано́вка для вакууми́рования метал.degassing plant
    устано́вка для вакууми́рования в ковше́ метал.ladle degassing plant
    устано́вка для кондициони́рования во́здуха — см. установка кондиционирования воздуха
    устано́вка для приготовле́ния формо́вочного песка́ — sand-conditioning plant
    устано́вка для размора́живания — thawer, defroster
    устано́вка для сублимацио́нной су́шки — freeze-drier, freeze-drying plant
    дождева́льная устано́вка — sprinkler installation, sprinkler system
    дозиро́вочная устано́вка стр.proportioning plant
    дои́льная устано́вка — milking installation, milking plant
    дои́льная устано́вка для дое́ния в молокопрово́д — pipe-line milking installation
    дои́льная устано́вка для дое́ния во фля́ги — in-churn milking outfit
    дои́льная, передвижна́я устано́вка — movable milking installation
    дои́льная, стациона́рная устано́вка — parlour milking installation
    дои́льная устано́вка ти́па ё́лочка — herring-bone (milking) bail
    дробестру́йная устано́вка — shot-blast unit
    устано́вка жи́дкого азо́та — liquid-nitrogen (production) plant
    устано́вка жи́дкого во́здуха — liquid-air (production) plant
    индукцио́нная электротерми́ческая устано́вка — induction (electrothermic) plant
    устано́вка интерва́лов ( в печатающем устройстве) вчт.line adjustment
    испари́тельная устано́вка — evaporator installation
    испыта́тельная устано́вка — test unit
    кислоро́дная устано́вка — oxygen plant
    компле́ктная устано́вка — package plant
    компре́ссорная устано́вка — compressor plant
    устано́вка кондициони́рования во́здуха — air conditioning installation, air conditioning plant, air conditioner
    кормоприготови́тельная устано́вка — feed-processing plant
    корообди́рочная устано́вка дер.-об.barker
    коте́льная устано́вка — boiler installation, boiler plant
    криоге́нная устано́вка — cryogenic plant
    лаборато́рная устано́вка — laboratory-scale plant
    ла́зерная, голографи́ческая устано́вка — hololaser
    модели́рующая устано́вка — simulator
    морози́льная устано́вка — freezing installation, freezing plant
    мусоросжига́тельная устано́вка — (refuse) incinerator
    нагрева́тельная устано́вка — heating installation, heating plant, heating unit
    насо́сная устано́вка — pump(ing) plant
    устано́вка на фо́кус — focusing
    устано́вка непреры́вного о́тжига — continuous annealing installation
    устано́вка непреры́вной разли́вки — continuous casting plant
    устано́вка нивели́ра — level set-up, level setting
    … тре́буется не́сколько устано́вок нивели́ра … — several level set-ups [level settings] may be necessary
    устано́вка нулевы́х у́ровней ( в операционном усилителе) — zero adjustment, zero setting, balance check, balancing
    устано́вка нуля́ — zero adjustment
    обеспы́ливающая устано́вка — dust catcher, dust-collecting plant
    обессо́ливающая устано́вка ( в водообработке) — demineralizing plant
    о́бжиговая устано́вка — метал., хим. calcining [roasting] plant; (в производстве огнеупоров и др. керамических изделий) burning [firing] plant
    обраба́тывающая устано́вка — processing plant
    устано́вка опо́р эл.support erection
    опресни́тельная устано́вка — (water-)desalinating plant
    о́пытная устано́вка ( не путать с эксперимента́льной устано́вкой) — pilot(-scale) plant (not to be confused with experimental plant)
    ороси́тельная устано́вка — sprinkler installation, sprinkler system
    освети́тельная устано́вка — lighting installation, lighting plant, lighting equipment
    отопи́тельная устано́вка — heating installation, heating plant
    устано́вка паралле́льного пита́ния — parallel-feed system
    паросилова́я устано́вка — steam power plant
    паротурби́нная устано́вка — steam-turbine plant
    перего́нная устано́вка — distillation plant, distillation unit
    пла́зменная, электродугова́я устано́вка — archeated plasma chamber
    устано́вка подтона́льного телеграфи́рования — брит. sub-audio telegraph set; амер. composite set
    подъё́мная устано́вка — hoisting plant
    устано́вка пожаротуше́ния — extinguishing installation
    устано́вка по перерабо́тке — processing plant
    устано́вка по перерабо́тке тряпья́ — rag-processing plant
    предвари́тельная устано́вка — presetting
    устано́вка предвари́тельного охлажде́ния — precooler
    промы́шленная устано́вка — commercial [full-scale] plant
    пускова́я устано́вка косм.launcher
    пылеприготови́тельная устано́вка — coal-pulverizing plant
    пылеулови́тельная устано́вка — dust removal [dust collecting] plant
    радиацио́нная устано́вка — radiation plant
    радиацио́нно-биологи́ческая устано́вка [РБУ] — radiobiological plant
    радиацио́нно-физи́ческая устано́вка [РФУ] — radiophysical plant
    радиацио́нно-хими́ческая устано́вка — radiochemical plant
    радиоизото́пная устано́вка — radioisotope plant
    радиолокацио́нная устано́вка — radar installation
    резе́рвная устано́вка — stand-by plant
    рентге́новская устано́вка — X-ray apparatus
    рефрижера́торная устано́вка — refrigerating plant
    сва́рочная устано́вка — welding unit
    сва́рочная, двухпостова́я устано́вка — two-operator welding unit
    сва́рочная, однопостова́я устано́вка — single-operator welding unit
    силова́я устано́вка — propulsion system, power plant, power unit
    осуществля́ть комплекта́цию силово́й устано́вки — build up a power plant
    разукомплекто́вывать силову́ю устано́вку — tear down a power plant
    силова́я, винтомото́рная устано́вка — engine-propeller power plant
    силова́я, возду́шно-реакти́вная устано́вка — air-breathing power plant
    силова́я, вспомога́тельная устано́вка — auxiliary power unit, APU
    смеси́тельная устано́вка — mixer, mixing plant
    устано́вка столбо́в — pole setting, poling
    телевизио́нная устано́вка — TV camera unit
    теплосилова́я устано́вка — thermal power plant
    термоопресни́тельная устано́вка — thermal desalting plant
    устано́вка техни́ческого кислоро́да — tonnage oxygen plant
    трави́льная устано́вка метал.pickling installation
    трубосва́рочная устано́вка — tube-welding [pipe-welding] plant
    турби́нная устано́вка — turbine plant
    турбогенера́торная устано́вка — turbine-generator set, turbogenerator
    хи́мико-технологи́ческая устано́вка — chemical engineering plant
    хи́мико-технологи́ческая, полузаводска́я устано́вка — pilot(-scale process) plant
    хи́мико-технологи́ческая, сте́ндовая устано́вка — bench-scale (process) plant
    хлопкоочисти́тельная устано́вка — cotton cleaner, gin
    хлора́торная устано́вка — chlorination plant
    холоди́льная устано́вка — refrigerating plant
    эксперимента́льная устано́вка — experimental plant
    электри́ческая устано́вка — electrical installation
    энергосилова́я устано́вка — power plant

    Русско-английский политехнический словарь > установка

  • 6 дефицит влажности

    1. Feuchtedefizit

     

    дефицит влажности
    Нрк. дефицит насыщения
    Разность между какой-либо величиной влажности в данном веществе и той же величиной при насыщении влагой этого вещества при тех же внешних условиях, выражаемая в единицах исходных величин.
    Примечание
    В этом термине вместо общего элемента «влажность» следует применять наименование конкретной величины влажности, например «дефицит точки росы», «дефицит массовой доли влаги», «дефицит парциального давления».
    Наименования и определения величин водности образуют по аналогии с наименованиями и определениями величин влажности.
    [РМГ 75-2004]

    Недопустимые, нерекомендуемые

    Тематики

    Обобщающие термины

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > дефицит влажности

  • 7 дефицит влажности

    1. deficit of moisture

     

    дефицит влажности
    Нрк. дефицит насыщения
    Разность между какой-либо величиной влажности в данном веществе и той же величиной при насыщении влагой этого вещества при тех же внешних условиях, выражаемая в единицах исходных величин.
    Примечание
    В этом термине вместо общего элемента «влажность» следует применять наименование конкретной величины влажности, например «дефицит точки росы», «дефицит массовой доли влаги», «дефицит парциального давления».
    Наименования и определения величин водности образуют по аналогии с наименованиями и определениями величин влажности.
    [РМГ 75-2004]

    Недопустимые, нерекомендуемые

    Тематики

    Обобщающие термины

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > дефицит влажности

  • 8 дефицит влажности

    1. deficit de la humidite

     

    дефицит влажности
    Нрк. дефицит насыщения
    Разность между какой-либо величиной влажности в данном веществе и той же величиной при насыщении влагой этого вещества при тех же внешних условиях, выражаемая в единицах исходных величин.
    Примечание
    В этом термине вместо общего элемента «влажность» следует применять наименование конкретной величины влажности, например «дефицит точки росы», «дефицит массовой доли влаги», «дефицит парциального давления».
    Наименования и определения величин водности образуют по аналогии с наименованиями и определениями величин влажности.
    [РМГ 75-2004]

    Недопустимые, нерекомендуемые

    Тематики

    Обобщающие термины

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > дефицит влажности

  • 9 лабораторная составляющая систематической погрешности

    1. laboratory component of bias

     

    лабораторная составляющая систематической погрешности
    Разность между систематической погрешностью лаборатории при реализации конкретного метода измерений (конкретной МВИ) и систематической погрешностью метода измерений (МВИ).
    Примечания
    1. Лабораторная составляющая систематической погрешности при реализации конкретного метода измерений (МВИ) является специфической для данной лаборатории и условий выполнения измерений в пределах лаборатории, и ее значение также может зависеть от значения измеряемой величины.
    2. Лабораторная составляющая систематической погрешности при реализации конкретного метода измерений (МВИ) относится к общему среднему результату измерений, но не к истинному или опорному значению измеряемой величины.
    Термин до настоящего времени в отечественных документах не применялся, вместе с тем этот показатель, так же как и показатель по 3.9 ГОСТ Р ИСО 5725-1 весьма полезен при проведении метрологических исследований (аттестации) МВИ по ГОСТ Р 8. 563 и оценке компетентности лабораторий по ГОСТ Р ИСО/МЭК 17025.
    [ ГОСТ Р ИСО 5725-1-2002]

    Тематики

    • метрология, основные понятия

    EN

    3.11 лабораторная составляющая систематической погрешности (laboratory component of bias): Разность между систематической погрешностью лаборатории при реализации конкретного метода измерений (конкретной МВИ) и систематической погрешностью метода измерений (МВИ).

    Примечания

    7 Лабораторная составляющая систематической погрешности при реализации конкретного метода измерений (МВИ) является специфической для данной лаборатории и условий выполнения измерений в пределах лаборатории, и ее значение также может зависеть от значения измеряемой величины.

    8 Лабораторная составляющая систематической погрешности при реализации конкретного метода измерений (МВИ) относится к общему среднему результату измерений, но не к истинному или опорному значению измеряемой величины.

    Термин до настоящего времени в отечественных документах не применялся, вместе с тем этот показатель, так же как и показатель по 3.9 ГОСТ Р ИСО 5725-1 весьма полезен при проведении метрологических исследований (аттестации) МВИ по ГОСТ Р 8.563 и оценке компетентности лабораторий по ГОСТ Р ИСО/МЭК 17025.

    Источник: ГОСТ Р ИСО 5725-1-2002: Точность (правильность и прецизионность) методов и результатов измерений. Часть 1. Основные положения и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > лабораторная составляющая систематической погрешности

  • 10 свинцово-кислотная аккумуляторная батарея

    1. lead acid battery

     

    свинцово-кислотная аккумуляторная батарея
    Аккумуляторная батарея, в которой электроды изготовлены главным образом из свинца, а электролит представляет собой раствор серной кислоты.
    [Инструкция по эксплуатации стационарных свинцово-кислотных аккумуляторных батарей в составе ЭПУ на объектах ВСС России. Москва 1998 г.]


    Свинцово-кислотные аккумуляторы для стационарного оборудования связи

    О. Чекстер, И. Джосан

    Источник: http://www.solarhome.ru/biblio/accu/chekster.htm

    При организации электропитания аппаратуры связи широкое применение находят аккумуляторные установки: их применяют для обеспечения бесперебойности и надлежащего качества электропитания оборудования связи, в том числе при перерывах внешнего электроснабжения, а также для обеспечения запуска и работы автоматики собственных электростанций и электроагрегатов. В подавляющем большинстве аккумуляторных установок используются стационарные свинцово-кислотные элементы и моноблоки.

    Свинцово-кислотные аккумуляторы: за и против

    Преимущественное применение свинцово-кислотных аккумуляторов объясняется целым рядом их достоинств.

    1. Во-первых, диапазон емкостей аккумуляторов находится в пределах от единиц ампер-часов до десятков килоампер-часов, что позволяет обеспечивать комплектацию батарей любого необходимого резерва.
    2. Во-вторых, соотношение между конечными зарядным и разрядным напряжениями при зарядах и разрядах свинцово-кислотных аккумуляторов имеет наименьшее значение из всех электрохимических систем источников тока, что позволяет обеспечивать низкий перепад напряжения на нагрузке во всех режимах работы электропитающей установки.
    3. В-третьих, свинцово-кислотные аккумуляторы отличаются низкой величиной саморазряда и возможностью сохранения заряда (емкости) при длительном подзаряде.
    4. В-четвертых, свинцово-кислотные аккумуляторы обладают сравнительно низким внутренним сопротивлением, что обуславливает достаточную стабильность напряжения питания при динамических изменениях сопротивления нагрузки.

    Вместе с тем свинцово-кислотным аккумуляторам присущи недостатки, ограничивающие сферу их применения и усложняющие организацию их эксплуатации.

    Из-за низкой удельной плотности запасаемой энергии свинцово-кислотные аккумуляторы имеют достаточно большие массогабаритные параметры. Однако для стационарного применения этот показатель не имеет главенствующего значения в отличие от применения аккумуляторов для питания мобильных устройств.

    Поскольку в установках свинцово-кислотных аккумуляторов происходит газообразование, для обеспечения взрывобезопасности должна быть налажена естественная или принудительная вентиляция - в зависимости от условий применения и типа аккумуляторов. По этой же причине аккумуляторные установки нельзя размещать в герметичных шкафах, отсеках и т.д.

    Разряженные свинцово-кислотные аккумуляторы требуют немедленного заряда. В противном случае переход мелкокристаллического сульфата свинца на поверхности электродов в крупнокристаллическую фазу может привести к безвозвратной потере емкости аккумуляторов. В связи с этим при длительном хранении такие аккумуляторы (кроме сухозаряженных) необходимо периодически дозаряжать.

    Типы аккумуляторов

    По исполнению

    Согласно классификации МЭК (стандарт МЭК 50 (486)-1991) свинцово-кислотные аккумуляторы выпускаются в открытом и закрытом исполнении.

    Открытые аккумуляторы - это аккумуляторы, имеющие крышку с отверстием, через которое могут удаляться газообразные продукты, заливаться электролит, производиться замер плотности электролита. Отверстия могут быть снабжены системой вентиляции.

    Закрытые аккумуляторы - это аккумуляторы, закрытые в обычных условиях работы, но снабженные устройствами, позволяющими выделяться газу, когда внутреннее давление превышает установленное значение. Дополнительная доливка воды в такие аккумуляторы невозможна. Эти аккумуляторы остаются закрытыми, имеют низкое газообразование при соблюдении условий эксплуатации, указанных изготовителем, и предназначены для работы в исходном герметизированном состоянии на протяжении всего срока службы. Их еще называют аккумуляторами с регулируемым клапаном, герметизированными или безуходными.

    В свинцово-кислотных аккумуляторах во всех режимах их работы, в том числе и при разомкнутой цепи нагрузки (холостой ход), происходит сульфатация поверхности электродов и газообразование с расходом на эти реакции воды, входящей в состав электролита. Это вынуждает при эксплуатации обычных открытых аккумуляторов производить периодический контроль уровня и плотности электролита, доливку дистиллированной воды с проведением уравнительных зарядов, что является довольно трудоемким процессом.

    В герметизированных аккумуляторах за счет применения материалов с пониженным содержанием примесей, иммобилизации электролита и других конструктивных особенностей интенсивность сульфатации и газообразования существенно снижена, что позволяет размещать такие аккумуляторы вместе с питаемым оборудованием.

    По конструкции электродов

    Область применения и особенности эксплуатации свинцово-кислотных аккумуляторов определяются их конструкцией. По типу конструкции положительных электродов (пластин) различают следующие типы аккумуляторов:

    • с электродами большой поверхности (по классификации немецкого стандарта DIN VDE 510 - GroE);
    • с панцирными (трубчатыми) положительными электродами (по классификации DIN - OPzS и OPzV);
    • с намазными и стержневыми положительными электродами (по классификации DIN - Ogi).

    Герметизированные аккумуляторы, как правило, имеют намазные положительные и отрицательные электроды (за исключением аккумуляторов OPzV).

    Критерии выбора

    При выборе типа стационарного свинцово-кислотного аккумулятора, наиболее пригодного для конкретной области применения, необходимо руководствоваться следующими критериями:

    • режим разряда и отдаваемая при этом емкость;
    • особенности размещения;
    • особенности эксплуатации;
    • срок службы;
    • стоимость.

    Режим разряда

    При выборе аккумуляторов для определенного режима разряда следует учитывать, что при коротких режимах разряда коэффициент отдачи аккумуляторов по емкости меньше единицы. При одинаковой емкости отдача элементов с электродами большой поверхности выше в два раза, чем для элементов с панцирными электродами, и в полтора раза - чем для элементов с намазными электродами.

    Стоимость

    Стоимость аккумулятора зависит от его типа: как правило, аккумуляторы с электродами большой поверхности дороже панцирных, а намазные - дешевле и тех и других. Герметизированные аккумуляторы стоят больше, чем открытые.

    Срок службы

    Самыми долговечными при соблюдении правил эксплуатации являются аккумуляторы с электродами большой поверхности, для которых срок службы составляет 20 и более лет. Второе место по сроку службы занимают аккумуляторы с панцирными электродами - примерно 16-18 лет. Срок службы аккумуляторов с намазными электродами достигает 10-12 лет. Примерно такие же сроки эксплуатации имеют герметизированные аккумуляторы.

    Однако ряд производителей выпускает герметизированные аккумуляторы и с меньшим сроком службы, но более дешевые. По классификации европейского объединения производителей аккумуляторов EUROBAT эти герметизированные аккумуляторы подразделяются на 4 класса по характеристикам и сроку службы:

    • более 12 лет;
    • 10-12 лет;
    • 6-9 лет;
    • 3-5 лет.

    Аккумуляторы с короткими сроками службы, как правило, дешевле остальных и предназначены в основном для использования в качестве резервных источников тока в установках бесперебойного питания переменным током (UPS) и на временных объектах связи.

    Следует учитывать, что указанные выше значения срока службы соответствуют средней температуре эксплуатации 20 °С. При увеличении температуры эксплуатации на каждые 10 °С за счет увеличения скорости электрохимических процессов в аккумуляторах их срок службы будет сокращаться в 2 раза.

    Размещение

    По величине занимаемой площади при эксплуатации преимущество имеют герметизированные аккумуляторы. За ними в порядке возрастания занимаемой площади следуют аккумуляторы открытых типов с намазными электродами, панцирными электродами и с электродами большой поверхности.

    Размещать герметизированные аккумуляторы при эксплуатации, как правило, допускается и в вертикальном, и в горизонтальном положении - это позволяет более экономно использовать площадь под размещение электрооборудования. При горизонтальном размещении герметизированных аккумуляторов, если нет других предписаний производителя, аккумуляторы устанавливаются таким образом, чтобы пакеты электродных пластин занимали вертикальное положение.

    Эксплуатация

    Минимальных трудовых затрат при эксплуатации требуют герметизированные аккумуляторы. Остальные типы аккумуляторов требуют больших трудозатрат обслуживающего персонала, особенно те устройства, у которых величина примеси сурьмы в положительных решетках превышает 3%.

    Качество сборки, а также укупорка соединения крышки с транспортировочной пробкой (для аккумуляторов открытых типов) или предохранительным клапаном (для герметизированных аккумуляторов) должны обеспечивать герметизацию аккумуляторов при избыточном или пониженном на 20 кПа (150 мм рт. ст.) атмосферном давлении и исключать попадание внутрь атмосферного кислорода и влаги, способных ускорять сульфатацию электродов и коррозию токосборов и борнов у сухозаряженных аккумуляторов при хранении, а также исключать выход изнутри кислоты и аэрозолей при их эксплуатации. Для герметизированных аккумуляторов, кроме того, качество укупорки должно обеспечивать нормальные условия рекомбинации кислорода и ограничивать выход газа при заданных изготовителем эксплуатационных режимах работы.

    Электрические характеристики

    Емкость

    Основным параметром, характеризующим качество аккумулятора при заданных массогабаритных показателях, является его электрическая емкость, определяемая по числу ампер-часов электричества, получаемого при разряде аккумулятора определенным током до заданного конечного напряжения.

    По классификации ГОСТ Р МЭК 896-1-95, номинальная емкость стационарного аккумулятора10) определяется по времени его разряда током десятичасового режима разряда до конечного напряжения 1,8 В/эл. при средней температуре электролита при разряде 20 °С. Если средняя температура электролита при разряде отличается от 20 °С, полученное значение фактической емкости (Сф) приводят к температуре 20 °С, используя формулу:

    С = Сф / [1 + z(t - 20)]

    где z - температурный коэффициент емкости, равный 0,006 °С-1 (для режимов разряда более часа) и 0,01 °С-1 (для режимов разряда, равных одному часу и менее); t - фактическое значение средней температуры электролита при разряде, °С.

    Емкость аккумуляторов при более коротких режимах разряда меньше номинальной и при температуре электролита (20 ± 5) °С для аккумуляторов с разными типами электродов должна быть не менее указанных в таблице значений (с учетом обеспечения приемлемых пределов изменения напряжения на аппаратуре связи).

    Как правило, при вводе в эксплуатацию аккумуляторов с малым сроком хранения на первом цикле разряда батарея должна отдавать не менее 95% емкости, указанной в таблице для 10-, 5-, 3- и 1-часового режимов разряда, а на 5-10-м цикле разряда (в зависимости от предписания изготовителя) -не менее 100% емкости, указанной в таблице для 10-, 5-, 3-, 1- и 0,5-часового режимов разряда.

    При выборе аккумуляторов следует обращать внимание на то, при каких условиях задается изготовителем значение номинальной емкости. Если значение емкости задается при более высокой температуре, то для сравнения данного типа аккумулятора с другими необходимо предварительно пересчитать емкость на температуру 20 °С. Если значение емкости задается при более низком конечном напряжении разряда, необходимо пересчитать емкость по данным разряда аккумуляторов постоянным током, приводимую в эксплуатационной документации или рекламных данных производителя для данного режима разряда, до конечного напряжения, указанного в таблице.

    Кроме того, при оценке аккумулятора следует учитывать исходное значение плотности электролита, при которой задается емкость: если исходная плотность повышена, то весьма вероятно, что срок службы аккумулятора сократится.

    Пригодность к буферной работе

    Другим параметром, характеризующим стационарные свинцово-кислотные аккумуляторы, является их пригодность к буферной работе. Это означает, что предварительно заряженная батарея, подключенная параллельно с нагрузкой к выпрямительным устройствам, должна сохранять свою емкость при указанном изготовителем напряжении подзаряда и заданной его нестабильности. Обычно напряжение подзаряда Uпз указывается для каждого типа аккумулятора и находится в пределах 2,18-2,27 В/эл. (при 20 °С). При эксплуатации с другими климатическими условиями следует учитывать температурный коэффициент изменения напряжения подзаряда.

    Нестабильность подзарядного напряжения для основных типов аккумуляторов не должна превышать 1%, что накладывает определенные требования на выбор выпрямительных устройств при проектировании электропитающих установок связи.

    При буферной работе для достижения приемлемого срока службы свинцово-кислотных аккумуляторов необходимо не превышать допустимый ток их заряда, который задается различными производителями в пределах 0,1-0,3 С10. При этом следует помнить, что ток заряда аккумуляторов с напряжением, превосходящим 2,4 В/эл., не должен превышать величину 0,05 С10.

    Разброс напряжения элементов

    Важным параметром, определяемым технологией изготовления аккумуляторов, является разброс напряжения отдельных элементов в составе батареи при заряде, подзаряде и разряде. Для открытых типов аккумуляторов этот параметр задается изготовителем, как правило, в пределах ± 2% от среднего значения. При коротких режимах разряда (1-часовом и менее) разброс напряжений не должен превышать +5%. Обычно для аккумуляторов с содержанием более 2% сурьмы в основе положительных электродов разброс напряжений отдельных элементов в батарее значительно ниже вышеуказанного и не приводит к осложнениям в процессе эксплуатации аккумуляторных установок.

    Для аккумуляторов с меньшим содержанием сурьмы в основе положительных электродов или с безсурьмянистыми сплавами указанный разброс напряжения элементов значительно больше и в первый год после ввода в действие может составлять +10% от среднего значения с последующим снижением в процессе эксплуатации.

    Отсутствие тенденции к снижению величины разброса напряжения в течение первого года после ввода в действие или увеличение разброса напряжения при последующей эксплуатации свидетельствует о дефектах устройства или о нарушении условий эксплуатации.

    Особенно опасно длительное превышение напряжения на отдельных элементах в составе батареи, превышающее 2,4 В/эл., поскольку это может привести к повышенному расходу воды в отдельных элементах при заряде или подзаряде батареи и к сокращению срока ее службы или повышению трудоемкости обслуживания (для аккумуляторов открытых типов это означает более частые доливки воды). Кроме того, значительный разброс напряжения элементов в батарее может привести к потере ее емкости вследствие чрезмерно глубокого разряда отдельных элементов при разряде батареи.

    Саморазряд

    Качество технологии изготовления аккумуляторов оценивается также и по такой характеристике, как саморазряд.

    Саморазряд (по определению ГОСТ Р МЭК 896-1-95 - сохранность заряда) определяется как процентная доля потери емкости бездействующим аккумулятором (при разомкнутой внешней цепи) при хранении в течение заданного промежутка времени при температуре 20 °С. Этот параметр определяет продолжительность хранения батареи в промежутках между очередными зарядами, а также величину подзарядного тока заряженной батареи.

    Величина саморазряда в значительной степени зависит от температуры электролита, поэтому для уменьшения подзарядного тока батареи в буферном режиме ее работы или для увеличения времени хранения батареи в бездействии целесообразно выбирать помещения с пониженной средней температурой.

    Обычно среднесуточный саморазряд открытых типов аккумуляторов при 90-суточном хранении при температуре 20 ° С не должен превышать 1% номинальной емкости, с ростом температуры на 10 °С это значение удваивается. Среднесуточный саморазряд герметизированных аккумуляторов при тех же условиях хранения, как правило, не должен превышать 0,1% номинальной емкости.

    Внутреннее сопротивление и ток короткого замыкания

    Для расчета цепей автоматики и защиты аккумуляторных батарей ГОСТ Р МЭК 896-1-95 регламентирует такие характеристики аккумуляторов как их внутреннее сопротивление и ток короткого замыкания. Эти параметры определяются расчетным путем по установившимся значениям напряжения при разряде батарей токами достаточно большой величины (обычно равными 4 С10 и 20 С10) и должны приводиться в технической документации производителя. По этим данным может быть рассчитан такой выходной динамический параметр электропитающей установки (ЭПУ), как нестабильность ее выходного напряжения при скачкообразных изменениях тока нагрузки, поскольку в буферных ЭПУ выходное сопротивление установки в основном определяется внутренним сопротивлением батареи.

    Примечание:

    "Бумажная" версия статьи содержит сводную таблицу характеристик аккумуляторов (стр. 126-128). Так как формат таблицы очень неудобен для размещения на сайте, здесь эта таблица не приводится.

    Об авторах: О.П. Чекстер, начальник лаборатории ФГУП ЛОНИИС; И.М. Джосан, ведущий инженер ФГУП ЛОНИИС

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > свинцово-кислотная аккумуляторная батарея

  • 11 coefficient of restitution

    коэффициент улавливания гранул данной величины (характеризует степень улавливания гранул конкретного размера конкретной конструкцией коллектора)

    Англо-русский словарь промышленной и научной лексики > coefficient of restitution

  • 12 алгоритм

    1. Algorithmus

     

    алгоритм
    Конечный набор предписаний для получения решения задачи посредством конечного количества операций.
    [ ГОСТ 34.003-90]

    алгоритм
    Конечное упорядоченное множество точно определенных правил для решения конкретной задачи.
    [ИСО/МЭК 2382-1]
    [ ГОСТ Р 52292-2004]

    алгоритм
    Последовательность действий для определенного вычисления
    [ ГОСТ 30721-2000]
    [ ГОСТ Р 51294.3-99]

    алгоритм
    Набор упорядоченных шагов для решения задачи, такой как математическая формула или инструкция в программе. В контексте кодирования речи алгоритмами называют математические методы, используемые для компрессии речи. Уникальные алгоритмы кодирования речи патентуются. Конкретные реализации алгоритмов в компьютерных программах также являются субъектом авторского права.
    Совокупность четко определенных правил, процедур или команд, обеспечивающих решение поставленной задачи за конечное число шагов.
    [ http://www.morepc.ru/dict/]

    алгоритм
    алгорифм
    Точное предписание относительно последовательности действий (шагов), преобразующих исходные данные в искомый результат. Это понятие появилось за много веков до появления компьютеров, с которыми его обычно связывают. Термин же происходит от слова Algorithmi, так на латинском языке звучало имя хорезмского математика IX столетия аль-Хорезми, трактат которого в средние века был распространен в Европе. Тогда алгоритмом называлось десятичное счисление и искусство счета в этой системе. А. — основа решения любой экономико-математической задачи, задачи управления, а также построения многих экономико-математических моделей — особенно прикладных, предназначенных для практических расчетов на компьютерах. Оценка качества А. обычно определяется его сходимостью (если А. не сходится, он не годится), скоростью сходимости (чем она выше, т.е. чем меньше шагов требуется для решения, тем А. лучше); кроме того, важную роль играют время счета на компьютере (оно зависит не только от числа шагов, но и других обстоятельств), удобство обращения к А., возможность работы в режиме диалога человека и ЭВМ. Для наглядности алгоритм, если он относительно прост, можно отобразить в виде блок-схемы (см. рис. А.2). А., записанный таким образом, чтобы его могла выполнять вычислительная машина, называется программой. Рис.А.2 Блок-схема алгоритма вычисления среднего арифметического Среди важнейших (для экономико-математических приложений) видов алгоритмов назовем следующие: Алгоритмитеративный [iterative routine] - см. Итеративные методы. Алгоритм моделирующий. [simulator] - алгоритм (компьютерная программа), имитирующий при исследовании сложных систем взаимодействие элементов процесса и позволяющий при заданной совокупности экзогенных величин (параметров, управляющих переменных) получить эндогенные величины (выходы) или их искомые характеристики. Алгоритм циклический [cyclical algorithm] - алгоритм, при котором через какое-то (обычно большое) число шагов результаты начинают повторяться. Таков, например, А. вычисления на компьютере псевдослучайных чисел. Алгоритм управления [control procedure] - точно определенный порядок выработки управленческих решений, формирования планов, обмена информацией в процессе управления. Тщательная отработка А. у. — необходимый этап проектирования любой АСУ. Для проверки А.у. эффективно применение методов машинной имитации.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > алгоритм

  • 13 алгоритм

    1. algorithm
    2. ALG
    3. -

     

    алгоритм
    Конечный набор предписаний для получения решения задачи посредством конечного количества операций.
    [ ГОСТ 34.003-90]

    алгоритм
    Конечное упорядоченное множество точно определенных правил для решения конкретной задачи.
    [ИСО/МЭК 2382-1]
    [ ГОСТ Р 52292-2004]

    алгоритм
    Последовательность действий для определенного вычисления
    [ ГОСТ 30721-2000]
    [ ГОСТ Р 51294.3-99]

    алгоритм
    Набор упорядоченных шагов для решения задачи, такой как математическая формула или инструкция в программе. В контексте кодирования речи алгоритмами называют математические методы, используемые для компрессии речи. Уникальные алгоритмы кодирования речи патентуются. Конкретные реализации алгоритмов в компьютерных программах также являются субъектом авторского права.
    Совокупность четко определенных правил, процедур или команд, обеспечивающих решение поставленной задачи за конечное число шагов.
    [ http://www.morepc.ru/dict/]

    алгоритм
    алгорифм
    Точное предписание относительно последовательности действий (шагов), преобразующих исходные данные в искомый результат. Это понятие появилось за много веков до появления компьютеров, с которыми его обычно связывают. Термин же происходит от слова Algorithmi, так на латинском языке звучало имя хорезмского математика IX столетия аль-Хорезми, трактат которого в средние века был распространен в Европе. Тогда алгоритмом называлось десятичное счисление и искусство счета в этой системе. А. — основа решения любой экономико-математической задачи, задачи управления, а также построения многих экономико-математических моделей — особенно прикладных, предназначенных для практических расчетов на компьютерах. Оценка качества А. обычно определяется его сходимостью (если А. не сходится, он не годится), скоростью сходимости (чем она выше, т.е. чем меньше шагов требуется для решения, тем А. лучше); кроме того, важную роль играют время счета на компьютере (оно зависит не только от числа шагов, но и других обстоятельств), удобство обращения к А., возможность работы в режиме диалога человека и ЭВМ. Для наглядности алгоритм, если он относительно прост, можно отобразить в виде блок-схемы (см. рис. А.2). А., записанный таким образом, чтобы его могла выполнять вычислительная машина, называется программой. Рис.А.2 Блок-схема алгоритма вычисления среднего арифметического Среди важнейших (для экономико-математических приложений) видов алгоритмов назовем следующие: Алгоритмитеративный [iterative routine] - см. Итеративные методы. Алгоритм моделирующий. [simulator] - алгоритм (компьютерная программа), имитирующий при исследовании сложных систем взаимодействие элементов процесса и позволяющий при заданной совокупности экзогенных величин (параметров, управляющих переменных) получить эндогенные величины (выходы) или их искомые характеристики. Алгоритм циклический [cyclical algorithm] - алгоритм, при котором через какое-то (обычно большое) число шагов результаты начинают повторяться. Таков, например, А. вычисления на компьютере псевдослучайных чисел. Алгоритм управления [control procedure] - точно определенный порядок выработки управленческих решений, формирования планов, обмена информацией в процессе управления. Тщательная отработка А. у. — необходимый этап проектирования любой АСУ. Для проверки А.у. эффективно применение методов машинной имитации.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    DE

    FR

    1 Алгоритм - однозначное описание последовательности операций над исходными данными (из некоторой совокупности возможных исходных данных), направленной на получение результата, полностью определяемого этими исходными данными.

    Источник: МИ 2174-91: Рекомендация. Государственная система обеспечения единства измерений. Аттестация алгоритмов и программ обработки данных при измерениях. Основные положения

    Русско-английский словарь нормативно-технической терминологии > алгоритм

  • 14 оценка недвижимости

    1. real estate valuation

     

    оценка недвижимости
    Процесс выработки расчетной величины цены недвижимого имущества или других активов для конкретной цели (напр., сдачи в аренду, покупки, продажи, аудита, рейтинга, вынужденной покупки или обложения налогом). Цель и имеющие отношение к делу обстоятельства определяют подходящие допущения и факты и, следовательно, используемый процесс.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > оценка недвижимости

  • 15 синхронизация времени

    1. time synchronization
    2. clock synchronization

     

    синхронизация времени
    -
    [ ГОСТ Р МЭК 60870-5-103-2005]

    Также нормированы допустимые временные задержки для различных видов сигналов, включая дискретные сигналы, оцифрованные мгновенные значения токов и напряжений, сигналы синхронизации времени и т.п.
    [Новости Электротехники №4(76) | СТАНДАРТ МЭК 61850]

    Широковещательное сообщение, как правило, содержит адрес отправителя и глобальный адрес получателя. Примером широковещательного сообщения служит синхронизация времени.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    Устройства последних поколений дают возможность синхронизации времени с точностью до микросекунд с помощью GPS.

    С помощью этого интерфейса сигнал синхронизации времени (от радиоприемника DCF77 сигнал точного времени из Braunschweig, либо от радиоприемника iRiG-B сигнал точного времени  глобальной спутниковой системы GPS) может быть передан в терминал для точной синхронизации времени.

    [Герхард Циглер. ЦИФРОВАЯ ДИСТАНЦИОННАЯ ЗАЩИТА. ПРИНЦИПЫ И ПРИМЕНЕНИЕ
    Перевод с английского ]

    В  том  случае  если  принятое  сообщение  искажено ( повреждено)  в  результате неисправности  канала  связи  или  в  результате  потери  синхронизации  времени, пользователь имеет возможность...

    2.13 Синхронизация часов реального времени сигналом по оптовходу 
    В современных системах релейной защиты зачастую требуется синхронизированная работа часов всех реле в системе для восстановления хронологии работы разных реле.
    Это может быть выполнено с использованием сигналов синхронизации времени   по интерфейсу IRIG-B, если  реле  оснащено  таким  входом  или  сигналом  от  системы OP

    [Дистанционная защита линии MiCOM P443/ ПРИНЦИП  РАБОТЫ]


    СИНХРОНИЗАЦИЯ ВРЕМЕНИ СОГЛАСНО СТАНДАРТУ IEEE 1588

    Автор: Андреас Дреер (Hirschmann Automation and Control)

    Вопрос синхронизации устройств по времени важен для многих распределенных систем промышленной автоматизации. При использовании протокола Precision Time Protocol (PTP), описанного стандартом IEEE 1588, становится возможным выполнение синхронизации внутренних часов устройств, объединенных по сети Ethernet, с погрешностями, не превышающими 1 микросекунду. При этом к вычислительной способности устройств и пропускной способности сети предъявляются относительно низкие требования. В 2008 году была утверждена вторая редакция стандарта (IEEE 1588-2008 – PTP версия 2) с рядом внесенных усовершенствований по сравнению с первой его редакцией.

    ЗАЧЕМ НЕОБХОДИМА СИНХРОНИЗАЦИЯ УСТРОЙСТВ ПО ВРЕМЕНИ?

    Во многих системах должен производиться отсчет времени. О неявной системе отсчета времени можно говорить тогда, когда в системе отсутствуют часы и ход времени определяется процессами, протекающими в аппаратном и программном обеспечении. Этого оказывается достаточно во многих случаях. Неявная система отсчета времени реализуется, к примеру, передачей сигналов, инициирующих начало отсчета времени и затем выполнение определенных действий, от одних устройств другим.

    Система отсчета времени считается явной, если показания времени в ней определяются часами. Указанное необходимо для сложных систем. Таким образом, осуществляется разделение процедур передачи данных о времени и данных о процессе.

    Два эффекта должны быть учтены при настройке или синхронизации часов в отдельных устройствах. Первое – показания часов в отдельных устройствах изначально отличаются друг от друга (смещение показаний времени друг относительно друга). Второе – реальные часы не производят отсчет времени с одинаковой скоростью. Таким образом, требуется проводить постоянную корректировку хода самых неточных часов.

    ПРЕДЫДУЩИЕ РЕШЕНИЯ

    Существуют различные способы синхронизации часов в составе отдельных устройств, объединенных в одну информационную сеть. Наиболее известные способы – это использование протокола NTP (Network Time Protocol), а также более простого протокола, который образован от него – протокола SNTP (Simple Network Time Protocol). Данные методы широко распространены для использования в локальных сетях и сети Интернет и позволяют обеспечивать синхронизацию времени с погрешностями в диапазоне миллисекунд. Другой вариант – использование радиосигналов с GPS спутников. Однако при использовании данного способа требуется наличие достаточно дорогих GPS-приемников для каждого из устройств, а также GPS-антенн. Данный способ теоретически может обеспечить высокую точность синхронизации времени, однако материальные затраты и трудозатраты обычно препятствуют реализации такого метода синхронизации.

    Другим решением является передача высокоточного временного импульса (например, одного импульса в секунду) каждому отдельному устройству по выделенной линии. Реализация данного метода влечет за собой необходимость создания выделенной линии связи к каждому устройству.

    Последним методом, который может быть использован, является протокол PTP (Precision Time Protocol), описанный стандартом IEEE 1588. Протокол был разработан со следующими целями:

    • Обеспечение синхронизация времени с погрешностью, не превышающей 1 микросекунды.
    • Предъявление минимальных требований к производительности процессоров устройств и к пропускной способности линии связи, что позволило бы обеспечить реализацию протокола в простых и дешевых устройствах.
      • Предъявление невысоких требований к обслуживающему персоналу.
      • Возможность использования в сетях Ethernet, а также в других сетях.
      • Спецификация его как международного стандарта.

    ОБЛАСТИ ПРИМЕНЕНИЯ ПРОТОКОЛА PTP

    Протокол PTP может быть применен в различного рода системах. В системах автоматизации, протокол PTP востребован везде, где требуется точная синхронизация устройств по времени. Протокол позволяет синхронизировать устройства в робототехнике или печатной промышленности, в системах осуществляющих обработку бумаги и упаковку продукции и других областях.

    В общем и целом в любых системах, где осуществляется измерение тех или иных величин и их сравнение с величинами, измеренными другими устройствами, использование протокола PTP является популярным решением. Системы управления турбинами используют протокол PTP для обеспечения более эффективной работы станций. События, происходящие в различных частях распределенных в пространстве систем, определяются метками точного времени и затем для целей архивирования и анализа осуществляется их передача на центры управления. Геоученые используют протокол PTP для синхронизации установок мониторинга сейсмической активности, удаленных друг от друга на значительные расстояния, что предоставляет возможность более точным образом определять эпицентры землетрясений. В области телекоммуникаций рассматривают возможность использования протокола PTP для целей синхронизации сетей и базовых станций. Также синхронизация времени согласно стандарту IEEE 1588 представляет интерес для разработчиков систем обеспечения жизнедеятельности, систем передачи аудио и видео потоков и может быть использована в военной промышленности.

    В электроэнергетике протокол PTPv2 (протокол PTP версии 2) определен для синхронизации интеллектуальных электронных устройств (IED) по времени. Например, при реализации шины процесса, с передачей мгновенных значений тока и напряжения согласно стандарту МЭК 61850-9-2, требуется точная синхронизация полевых устройств по времени. Для реализации систем защиты и автоматики с использованием сети Ethernet погрешность синхронизации данных различных устройств по времени должна лежать в микросекундном диапазоне.

    Также для реализации функций синхронизированного распределенного векторного измерения электрических величин согласно стандарту IEEE C37.118, учета, оценки качества электрической энергии или анализа аварийных событий необходимо наличие устройств, синхронизированных по времени с максимальной точностью, для чего может быть использован протокол PTP.

    Вторая редакция стандарта МЭК 61850 определяет использование в системах синхронизации времени протокола PTP. Детализация профиля протокола PTP для использования на объектах электроэнергетики (IEEE Standard Profile for Use of IEEE 1588 Precision Time Protocol in Power System Applications) в настоящее время осуществляется рабочей группой комитета по релейной защите и автоматике организации (PSRC) IEEE.

    ПРОТОКОЛ PTP ВЕРСИИ 2

    В 2005 году была начата работа по изменению стандарта IEEE1588-2002 с целью расширения возможных областей его применения (телекоммуникации, беспроводная связь и в др.). Результатом работы стало новое издание IEEE1588-2008, которое доступно с марта 2008 со следующими новыми особенностями:

    • Усовершенствованные алгоритмы для обеспечения погрешностей в наносекундном диапазоне.
    • Повышенное быстродействие синхронизации времени (возможна более частая передача сообщений синхронизации Sync).
    • Поддержка новых типов сообщений.
    • Ввод однорежимного принципа работы (не требуется передачи сообщений типа FollowUp).
    • Ввод поддержки функции т.н. прозрачных часов для предотвращения накопления погрешностей измерения при каскадной схеме соединения коммутаторов.
    • Ввод профилей, определяющих настройки для новых областей применения.
    • Возможность назначения на такие транспортные механизмы как DeviceNet, PROFInet и IEEE802.3/Ethernet (прямое назначение).
    • Ввод структуры TLV (тип, длина, значение) для расширения возможных областей применения стандарта и удовлетворения будущих потребностей.
    • Ввод дополнительных опциональных расширений стандарта.

    ПРИНЦИП ФУНКЦИОНИРОВАНИЯ СИСТЕМ НА ОСНОВЕ ПРОТОКОЛА PTP

    В системах, где используется протокол PTP, различают два вида часов: ведущие часы и ведомые часы. Ведущие часы, в идеале, контролируются либо радиочасами, либо GPS-приемниками и осуществляют синхронизацию ведомых часов. Часы в конечном устройстве, неважно ведущие ли они или ведомые, считаются обычными часами; часы в составе устройств сети, выполняющих функцию передачи и маршрутизации данных (например, в Ethernet-коммутаторах), считаются граничными часами.

    Процедура синхронизации согласно протоколу PTP подразделяется на два этапа. На первом этапе осуществляется коррекция разницы показаний времени между ведущими и ведомыми часами – то есть осуществляется так называемая коррекция смещения показаний времени. Для этого ведущее устройство осуществляет передачу сообщения для целей синхронизации времени Sync ведомому устройству (сообщение типа Sync). Сообщение содержит в себе текущее показание времени ведущих часов и его передача осуществляется периодически через фиксированные интервалы времени. Однако поскольку считывание показаний ведущих часов, обработка данных и передача через контроллер Ethernet занимает некоторое время, информация в передаваемом сообщении к моменту его приема оказывается неактуальной.   Одновременно с этим осуществляется как можно более точная фиксация момента времени, в который сообщение Sync уходит от отправителя, в составе которого находятся ведущие часы (TM1). Затем ведущее устройство осуществляет передачу зафиксированного момента времени передачи сообщения Sync ведомым устройствам (сообщение FollowUp). Те также как можно точнее осуществляют измерение момента времени приема первого сообщения (TS1) и вычисляют величину, на которую необходимо выполнить коррекцию разницы в показаниях времени между собою и ведущим устройством соответственно (O) (см. рис. 1 и рис. 2). Затем непосредственно осуществляется коррекция показаний часов в составе ведомых устройств на величину смещения. Если задержки в передачи сообщений по сети не было, то можно утверждать, что устройства синхронизированы по времени.

    На втором этапе процедуры синхронизации устройств по времени осуществляется определение задержки в передаче упомянутых выше сообщений по сети между устройствами. Указанное выполняется  при использовании сообщений специального типа. Ведомое устройство отправляет так называемое сообщение Delay Request (Запрос задержки в передаче сообщения по сети) ведущему устройству и осуществляет фиксацию момента передачи данного сообщения. Ведущее устройство фиксирует момент приема данного сообщения и отправляет зафиксированное значение в сообщении Delay Response (Ответное сообщение с указанием момента приема сообщения). Исходя из зафиксированных времен передачи сообщения Delay Request ведомым устройством и приема сообщения Delay Response ведущим устройством производится оценка задержки в передачи сообщения между ними по сети. Затем производится соответствующая коррекция показаний часов в ведомом устройстве. Однако все упомянутое выше справедливо, если характерна симметричная задержка в передаче сообщения в обоих направлениях между устройствами (то есть характерны одинаковые значения в задержке передачи сообщений в обоих направлениях).

    Задержка в передачи сообщения в обоих направлениях будет идентичной в том случае, если устройства соединены между собой по одной линии связи и только. Если в сети между устройствами имеются коммутаторы или маршрутизаторы, то симметричной задержка в передачи сообщения между устройствами не будет, поскольку коммутаторы в сети осуществляют сохранение тех пакетов данных, которые проходят через них, и реализуется определенная очередность их передачи. Эта особенность может, в некоторых случаях, значительным образом влиять на величину задержки в передаче сообщений (возможны значительные отличия во временах передачи данных). При низкой информационной загрузке сети этот эффект оказывает малое влияние, однако при высокой информационной загрузке, указанное может значительным образом повлиять на точность синхронизации времени. Для исключения больших погрешностей был предложен специальный метод и введено понятие граничных часов, которые реализуются в составе коммутаторов сети. Данные граничные часы синхронизируются по времени с часами ведущего устройства. Далее коммутатор по каждому порту является ведущим устройством для всех ведомых устройств, подключенных к его портам, в которых осуществляется соответствующая синхронизация часов. Таким образом, синхронизация всегда осуществляется по схеме точка-точка и характерна практически одинаковая задержка в передаче сообщения в прямом и обратном направлении, а также практическая неизменность этой задержки по величине от одной передачи сообщения к другой.

    Хотя принцип, основанный на использовании граничных часов показал свою практическую эффективность, другой механизм был определен во второй  версии протокола PTPv2 – механизм использования т. н. прозрачных часов. Данный механизм  предотвращает накопление погрешности, обусловленной изменением величины задержек в передаче сообщений синхронизации коммутаторами и предотвращает снижение точности синхронизации в случае наличия сети с большим числом каскадно-соединенных коммутаторов. При использовании такого механизма передача сообщений синхронизации осуществляется от ведущего устройства ведомому, как и передача любого другого сообщения в сети. Однако когда сообщение синхронизации проходит через коммутатор фиксируется задержка его передачи коммутатором. Задержка фиксируется в специальном поле коррекции в составе первого сообщения синхронизации Sync или в составе последующего сообщения FollowUp (см. рис. 2). При передаче сообщений Delay Request и Delay Response также осуществляется фиксация времени задержки их в коммутаторе. Таким образом, реализация поддержки т. н. прозрачных часов в составе коммутаторов позволяет компенсировать задержки, возникающие непосредственно в них.

    РЕАЛИЗАЦИЯ ПРОТОКОЛА PTP

    Если необходимо использование протокола PTP в системе, должен быть реализован стек протокола PTP. Это может быть сделано при предъявлении минимальных требований к производительности процессоров устройств и к пропускной способности сети. Это очень важно для реализации стека протокола в простых и дешевых устройствах. Протокол PTP может быть без труда реализован даже в системах, построенных на дешевых контроллерах (32 бита).

    Единственное требование, которое необходимо удовлетворить для обеспечения высокой точности синхронизации, – как можно более точное измерение устройствами момента времени, в который осуществляется передача сообщения, и момента времени, когда осуществляется прием сообщения. Измерение должно производится максимально близко к аппаратной части (например, непосредственно в драйвере) и с максимально возможной точностью. В реализациях исключительно на программном уровне архитектура и производительность системы непосредственно ограничивают максимально допустимую точность.

    При использовании дополнительной поддержки аппаратного обеспечения для присвоения меток времени, точность может быть значительным образом повышена и может быть обеспечена ее виртуальная независимость от программного обеспечения. Для этого необходимо использование дополнительной логики, которая может быть реализована в программируемой логической интегральной схеме или специализированной для решения конкретной задачи интегральной схеме на сетевом входе.

    РЕЗУЛЬТАТЫ

    Компания Hirschmann – один из первых производителей, реализовавших протокол PTP и оптимизировавших его использование. Компанией был разработан стек, максимально эффективно реализующий протокол, а также чип (программируемая интегральная логическая схема), который обеспечивает высокую точность проводимых замеров.

    В системе, в которой несколько обычных часов объединены через Ethernet-коммутатор с функцией граничных часов, была достигнута предельная погрешность +/- 60 нс при практически полной независимости от загрузки сети и загрузки процессора. Также компанией была протестирована система, состоящая из 30 каскадно-соединенных коммутаторов, обладающих функцией поддержки т.н. прозрачных часов и были зафиксированы  погрешности менее в пределах +/- 200 нс.

    Компания Hirschmann Automation and Control реализовала протоколы PTP версии 1 и версии 2 в промышленных коммутаторах серии MICE, а также в серии монтируемых на стойку коммутаторов MACH100.

    ВЫВОДЫ

    Протокол PTP во многих областях уже доказал эффективность своего применения. Можно быть уверенным, что он получит более широкое распространение в течение следующих лет и что многие решения при его использовании смогут быть реализованы более просто и эффективно чем при использовании других технологий.

    [ Источник]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > синхронизация времени

  • 16 устройство защиты от импульсных перенапряжений

    1. voltage surge protector
    2. surge protector
    3. surge protective device
    4. surge protection device
    5. surge offering
    6. SPD

     

    устройство защиты от импульсных перенапряжений
    УЗИП

    Устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсных токов. Это устройство содержит по крайней мере один нелинейный элемент.
    [ ГОСТ Р 51992-2011( МЭК 61643-1: 2005)]

    устройство защиты от импульсных разрядов напряжения
    Устройство, используемое для ослабления действия импульсных разрядов перенапряжений и сверхтоков ограниченной длительности. Оно может состоять из одного элемента или иметь более сложную конструкцию. Наиболее распространенный тип SPD - газонаполненные разрядники.
    (МСЭ-Т K.44, МСЭ-Т K.46, МСЭ-Т K.57,, МСЭ-Т K.65, МСЭ-Т K.66)
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    См. также:

    • импульсное перенапряжение
    • ГОСТ Р 51992-2011( МЭК 61643-1: 2005)
      Устройства защиты от импульсных перенапряжений низковольтные.
      Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах.
      Технические требования и методы испытаний

    КЛАССИФИКАЦИЯ  (по ГОСТ Р 51992-2011( МЭК 61643-1: 2005)) 
     


    ВОПРОС: ЧТО ТАКОЕ ТИПЫ И КЛАССЫ УЗИП ?

    Согласно классификации ГОСТ, МЭК а также немецкого стандарта DIN, Устройства Защиты от Импульсных Перенапряжений УЗИП делятся на разные категории по методу испытаний и месту установки.

    Класс 1 испытаний соответствует Типу 1 и Классу Требований B
    Класс 2 испытаний соответствует Типу 2 и Классу Требований C
    Класс 3 испытаний соответствует Типу 3 и Классу Требований D

    ВОПРОС: ЧЕМ УЗИП ТИП 1 ОТЛИЧАЕТСЯ ОТ УЗИП ТИП 2?

    УЗИП тип 1 устанавливаются на вводе в здание при воздушном вводе питания или при наличии системы внешней молниезащиты. УЗИП в схеме включения предназначен для отвода части прямого тока молнии. В соответствии с ГОСТ Р 51992-2002, УЗИП 1-го класса испытаний ( тип 1) испытываются импульсом тока с формой волны 10/350 мкс.
    УЗИП тип 2 служат для защиты от наведённых импульсов тока и устанавливаются либо после УЗИП тип 1, либо на вводе в здание при отсутствии вероятности попадания части тока молнии. УЗИП 2 класса испытаний (тип 2) испытываются импульсом тока с формой 8/20 мкс.
    ВОПРОС: ГДЕ ПРИМЕНЯЕТСЯ УЗИП ТИПА 3 ?

    Устройства для Защиты от Импульсных Перенапряжений Типа 3 предназначены для "тонкой" защиты наиболее ответственного и чувствительного электрооборудования, например медицинской аппаратуры, систем хранения данных и пр. УЗИП Типа 3 необходимо устанавливать не далее 5 метров по кабелю от защищаемого оборудования. Модификации УЗИП Типа 3 могут быть выполнены в виде адаптера сетевой розетки или смонтированы непосредственно в корпусе или на шасси защищаемого прибора. Для бытового применения доступна версия MSB06 скрытого монтажа, за обычной сетевой розеткой.

    ВОПРОС: ЗАЧЕМ НУЖЕН СОГЛАСУЮЩИЙ ДРОССЕЛЬ?

    Для правильного распределения мощности импульса между ступенями защиты ставят линию задержки в виде дросселя индуктивностью 15 мкГн или отрезок кабеля длиной не менее 15 м, имеющего аналогичную индуктивность. В этом случае сначала сработает УЗИП 1-го класса и возьмёт на себя основную энергию импульса, а затем устройство 2-го класса ограничит напряжение до безопасного уровня.

    ВОПРОС: ЗАЧЕМ СТАВИТЬ УЗИП, ЕСЛИ НА ВВОДЕ УЖЕ СТОИТ АВТОМАТ ЗАЩИТЫ И УЗО?

    Вводной автомат (например на 25, 40, 63 А) защищает систему электроснабжения от перегрузки и коротких замыканий со стороны потребителя. Устройство защитного отключения УЗО (например, с током отсечки 30 или 100 мА) защищает человека от случайного поражения электрическим током.
    Но ни одно из этих устройств не может защитить электрическую сеть и оборудование от микросекундных импульсов большой мощности. Такую защиту обеспечивает только Устройство Защиты от Импульсных Перенапряжений УЗИП со временем срабатывания в наносекундном диапазоне.

    ВОПРОС: КАКОЕ УСТРОЙСТВО ЛУЧШЕ ЗАЩИТИТ ОТ ГРОЗЫ: УЗИП ИЛИ ОПН ?

    УЗИП - это официальное (ГОСТ) наименование всего класса устройств для защиты от последствий токов молний и импульсных перенапряжений в сетях до 1000 В. В литературе, в публикациях в интернете до сих пор встречаются названия - ОПН (Ограничитель перенапряжения), Разрядник, Молниеразрядник, Грозоразрядник - которые применительно к сетям до 1000 Вольт означают по сути одно устройство - это УЗИП. Для организации эффективной молниезащиты необходимо обращать внимание не на название устройства, а на его характеристики.

    ВОПРОС: КАК СРАВНИТЬ УЗИП РАЗНЫХ ПРОИЗВОДИТЕЛЕЙ?

    Все УЗИП, продаваемые на территории России, должны производиться и испытываться в соответствии с ГОСТ Р 51992-2002( аналог международного стандарта МЭК 61643-1-98). ГОСТ Р 51992-2002 предусматривает наличие у каждого устройства ряда характеристик, которые производитель обязан указать в паспорте и на самом изделии.

    Класс испытаний (Тип) 1, 2 или 3
    Импульсный ток Iimp (10/350 мкс) для УЗИП 1 класса
    Номинальный импульсный ток In (8/20 мкс)
    Максимальный импульсный ток Imax (8/20 мкс)
    Уровень напряжения защиты Up, измеренный при In

    По этим характеристикам и происходит сравнение. Замечание: некоторые производители указывают значения импульсных токов на фазу (модуль), а другие - на устройство в целом. Для сравнения их надо приводить к одному виду.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


    ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ УСТРОЙСТВ ЗАЩИТЫ ОТ
    ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ В НИЗКОВОЛЬТНЫХ СИЛОВЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ
    ЗОРИЧЕВ А.Л.,
    заместитель директора
    ЗАО «Хакель Рос»

    В предыдущих номерах журнала были изложены теоретические основы применения устройств защиты от импульсных перенапряжений (УЗИП) в низковольтных электрических сетях. При этом отмечалась необходимость отдельного более детального рассмотрения некоторых особенностей эксплуатации УЗИП, а также типовых аварийных ситуаций, которые могут возникнуть при этом.

    1. Диагностика устройств защиты от перенапряжения
    Конструкция и параметры устройств защиты от импульсных перенапряжения постоянно совершенствуются, повышается их надежность, снижаются требования по техническому обслуживанию и контролю. Но, не смотря на это, нельзя оставлять без внимания вероятность их повреждения, особенно при интенсивных грозах, когда может произойти несколько ударов молнии непосредственно в защищаемый объект или вблизи от него во время одной грозы. Устройства защиты, применяемые в низковольтных электрических сетях и в сетях передачи информации подвержены так называемому старению (деградации), т.е. постепенной потере своих способностей ограничивать импульсные перенапряжения. Интенсивнее всего процесс старения протекает при повторяющихся грозовых ударах в течении короткого промежутка времени в несколько секунд или минут, когда амплитуды импульсных токов достигают предельных максимальных параметров I max (8/20 мкс) или I imp (10/350 мкс) для конкретных типов защитных устройств.

    Повреждение УЗИП происходит следующим образом. Разрядные токи, протекающие при срабатывании защитных устройств, нагревают корпуса их нелинейных элементов до такой температуры, что при повторных ударах с той же интенсивностью (в не успевшее остыть устройство) происходит:

    −   у варисторов - нарушение структуры кристалла (тепловой пробой) или его полное разрушение;
    −   у металлокерамических газонаполненных разрядников (грозозащитных разрядников) - изменение свойств в результате утечки газов и последующее разрушение керамического корпуса;

    −  у разрядников на основе открытых искровых промежутков -за счет взрывного выброса ионизированных газов во внутреннее пространство распределительного щита могут возникать повреждения изоляции кабелей, клеммных колодок и других элементов электрического шкафа или его внутренней поверхности. На практике известны даже случаи значительной деформации металлических шкафов, сравнимые только с последствиями взрыва ручной гранаты. Важной особенностью при эксплуатации разрядников этого типа в распределительных щитах является также необходимость повышения мер противопожарной безопасности.

    По указанным выше причинам все изготовители устройств защиты от перенапряжения рекомендуют осуществлять их регулярный контроль, особенно после каждой сильной грозы. Проверку необходимо осуществлять с помощью специальных тестеров, которые обычно можно заказать у фирм, занимающихся техникой защиты от перенапряжений. Контроль, осуществляемый другими способами, например, визуально или с помощью универсальных измерительных приборов, в этом случае является неэффективным по следующим причинам:

    −  Варисторное защитное устройство может быть повреждёно, хотя сигнализация о выходе варистора из строя не сработала. Варистор может обладать искажённой вольтамперной характеристикой (более высокая утечка) в области токов до 1 мA (область рабочих токов при рабочем напряжении сети; настоящую область не возможно проверить с помощью обычно применяемых приборов). Проверка осуществляется минимально в 2-х точках характеристики, напр. при 10 и 1000 мкА, с помощью специального источника тока с высоким подъёмом напряжения (1 до 1,5 кВ).

    −    Металлокерамический газонаполненный (грозовой) разрядник - с помощью визуального контроля можно заметить только поврежденный от взрыва внешний декоративный корпус устройства (или его выводы). Что бы выяснить состояние самого разрядника необходимо разобрать внешний корпус, но даже при таком контроле практически нельзя обнаружить утечку его газового заряда. Контроль напряжения зажигания грозового разрядника с помощью обыкновенных измерительных приборов выполнить очень трудно, он осуществляется при помощи специализированных тестеров.

     −   Разрядник с открытым искровым промежутком - проверку исправной работы можно осуществить только после его демонтажа и измерения с помощью генератора грозового тока с характеристикой 10/350 мкс по заказу у изготовителя устройств для защиты от импульсных перенапряжений.
     

    2. Защита от токов утечки и короткого замыкания в устройствах защиты от импульсных перенапряжений

    Основным принципом работы устройства защиты от импульсных перенапряжений является выравнивание потенциалов между двумя проводниками, одним из которых является фазный (L) проводник, а другим нулевой рабочий (N) или (РЕN) проводник, т.е. устройство включается параллельно нагрузке. При этом, в случае выхода из строя УЗИП (пробой изоляции, пробой или разрушение нелинейного элемента) или невозможности гашения сопровождающего тока (в случае применения искровых разрядников или разрядников скользящего разряда) возможно возникновение режима короткого замыкания между данными проводниками, что может привести к повреждению электроустановки и даже возникновению пожара. Стандартами МЭК предусматривается два обязательных способа защиты электроустановок потребителя 220/380 В от подобного рода ситуаций.

    2.1. Устройство теплового отключения в варисторных устройствах защиты от импульсных перенапряжений

    Имеющееся в варисторных ограничителях перенапряжений устройство отключения при перегреве (тепловая защита), как правило, срабатывает в результате процесса старения варистора. Суть явления заключается в том, что при длительной эксплуатации, а также в результате воздействий импульсов тока большой амплитуды происходит постепенное разрушение p-n переходов в структуре варистора, что приводит к снижению значения такого важного параметра, как наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc. Этот параметр определяется для действующего напряжения электрической сети и указывается производителями защитных устройств в паспортных данных и, как правило, непосредственно на корпусе защитного устройства. Для примера: если на корпусе защитного устройства указано значение Uc = 275 В, это обозначает, что устройство будет нормально функционировать в электропитающей сети номиналом 220 В при увеличении действующего напряжения на его клеммах до 275 В включительно (значение взято с достаточным запасом при условии выполнения электроснабжающей организацией требований ГОСТ 13109 «Нормы качества электрической энергии в системах электроснабжения общего назначения»).

    В результате «старения» варистора значение Uc снижается и в определенный момент времени может оказаться меньше чем действующее напряжение в сети. Это приведет к возрастанию токов утечки через варистор и быстрому повышению его температуры, что может вызвать деформацию корпуса устройства, проплавление фазными клеммами пластмассы и, в конечном итоге, короткое замыкание на DIN-рейку и даже пожар.

    В связи с этим, для применения в электроустановках рекомендуются только те варисторные ограничители перенапряжения, которые имеют в своем составе устройство теплового отключения (терморазмыкатель). Конструкция данного устройства, как правило, очень проста и состоит из подпружиненного контакта, припаянного легкоплавким припоем к одному из выводов варистора, и связанной с ним системы местной сигнализации. В некоторых устройствах дополнительно применяются «сухие» контакты для подключения дистанционной сигнализации о выходе ограничителя перенапряжений из строя, позволяющие с помощью физической линии передавать информацию об этом на пульт диспетчера или на вход какой-либо системы обработки и передачи телеметрических данных. (См. рис. 1).

    5018

    2.2. Применение быстродействующих предохранителей для защиты от токов короткого замыкания

    Несколько другая ситуация возникает в случае установившегося длительного превышения действующего напряжения в сети над наибольшим длительно допустимым рабочим напряжением защитного устройства (Uc), определенным ТУ для данного УЗИП. Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к нагрузке может оказаться приложенным межфазное напряжение 380 В. При этом устройство защиты от импульсных перенапряжений сработает, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер. Практика показывает, что устройство тепловой защиты не успевает отреагировать в подобных ситуациях из-за инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора). Как же как и в предыдущем случае, возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств. Сказанное выше относится не только к варисторным ограничителям, но и к УЗИП на базе разрядников, которые не имеют в своем составе устройства теплового отключения. На фотографии (рис. 2) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

    5019

    Рис.2 Выход из строя варисторного УЗИП привел к пожару в ГРЩ.

    На рисунке 3 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

    5020

    Рис.3

    Для того чтобы предотвратить подобные последствия рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339. 0-92 ( МЭК 60269-1-86) или VDE 0636 (Германия) соответственно).

    Практически все производители устройств защиты от импульсных перенапряжений в своих каталогах приводят требования по номинальному значению и типу характеристики срабатывания предохранителей дополнительной защиты от токов короткого замыкания. Как уже указывалось выше, для этих целей используются предохранители типа gG или gL, предназначенные для защиты проводок и распределительных устройств от перегрузок и коротких замыканий. Они обладают значительно меньшим (на 1-2 порядка) временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин. Практический опыт и данные экспериментальных испытаний показывают, что автоматические выключатели очень часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции.

    Возможны различные варианты применения предохранителей и, соответственно, существует ряд особенностей, которые необходимо учитывать еще на этапе проектирования схемы электроснабжения или при изготовлении щитовой продукции. Одна из таких особенностей заключается в том, что в случае, если в качестве защиты от токов короткого замыкания будет использоваться только общая защита (вводные предохранители), то при коротком замыкании в любом УЗИП (первой, второй или третьей ступени) всегда будет обесточиваться вся электроустановка в целом или какая-то ее часть. Применение предохранителей, включенных последовательно с каждым защитным устройством, исключает такую ситуацию. Но при этом встает вопрос подбора предохранителей с точки зрения селективности (очередности) их срабатывания. Решение этого вопроса осуществляется путем применения предохранителей тех типов и номиналов, которые рекомендованы производителем конкретных моделей устройств защиты от перенапряжений.

    Пример установки предохранителей F7-F12 приведен на рисунке 4.

     

    5021

    Рис.4 Установка защитных устройств в TN-S сеть 220/380 В

     

    ПРИМЕР: При использовании в схеме, приведенной на рисунке 4, разрядников HS55 в первой ступени защиты и варисторных УЗИП PIII280 во второй ступени применение предохранителей F5-F7 и F8-F10 будет обусловлено выбором номинального значения предохранителей F1-F3:

    ·         При значении F1-F3 более 315 А gG, значения F7-F9 и F10-F12 выбираются ­315 А gG и 160 А gG соответственно;

    ·         При значении F1-F3 менее 315 А gG, но более 160 А gG, предохранители F7-F9 можно не устанавливать, F10-F12 выбираются - 160 А gG;

    ·         При значении F1-F3 менее 160 А gG, предохранители F7-F12 можно не устанавливать.

     

    Иногда может потребоваться, чтобы в случае возникновения короткого замыкания в защитных устройствах не срабатывал общий предохранитель на вводе электропитающей установки. Для этого необходимо устанавливать в цепи каждого УЗИП предохранители с учетом коэффициента (1,6). Т.е. если предохранитель на входе электроустановки имеет номинальное значение 160 А gG, то предохранитель включенный последовательно с УЗИП должен иметь номинал 100 А gG.

    Применение для данных целей автоматических выключателей осложняется причинами, перечисленными выше, а также не соответствием их времятоковых характеристик характеристикам предохранителей.

    3. Часто встречающиеся недостатки в конструктивном исполнении устройств защиты от импульсных перенапряжений

    Многими фирмами-производителями предлагаются защитные устройства классов I и II, состоящие из базы, предназначенной для установки на DIN-рейку, и сменного модуля с нелинейным элементом (разрядником или варистором) с ножевыми вставными контактами. Такое конструктивное исполнение кажется на вид более выгодным и удобным для заказчика, чем монолитный корпус, в виду возможности более простого осуществления измерения сопротивления изоляции электропроводки (при измерениях повышенными напряжениями этот модуль можно просто изъять). Однако способность сконструированных таким способом контактов пропускать импульсные токи не превышает предел Imax = 25 kA для волны (8/20 мкс) и Iimp = 20 kA для волны (10/350 мкс).

    Несмотря на это, некоторые изготовители показывают в рекламных каталогах для таких защитных устройств максимальные разрядные способности величинами до Imax = 100 kA (8/20 мкс) или Iimp = 25 kA (10/350 мкс). К сожалению, это не подтверждается практическими данными. Уже при первом ударе испытательного импульса тока с такой амплитудой произойдут пережоги и разрушение не только ножевых контактов сменного модуля, но также и повреждение контактов клемм в базе. Разрушительное воздействие испытательного импульса тока Imax = 50 kA (8/20 мкс) на механическую часть такой системы и ножевой контакт показано на следующих фотографиях (рис. 5). Очевидно, что после такого воздействия сложным становится, собственно, сам вопрос извлечения вставки из базы, так как их контакты могут привариться друг к другу. Даже если вставку удастся отсоединить от базы, последнюю будет нельзя использовать далее из-за подгоревших контактов, которые приведут к резкому возрастанию переходного сопротивления и, соответственно, уровня защиты данного УЗИП.

    5022

     

    Для того чтобы избежать подобных последствий, защитные устройства модульной конструкции необходимо применять только тогда, когда существует гарантия, что ожидаемые импульсные воздействия не превысят указанных выше значений. Это может быть выполнено в случае правильного выбора типов и классов УЗИП для конкретной электроустановки и согласования их параметров между ступенями защиты.

    4. Использование УЗИП для защиты вторичных источников питания 

    Одним из наиболее часто используемых вторичных источников питания является выпрямитель. Следует отметить, что практика установки элементов защиты от перенапряжений (разрядников, варисторов и т.п.) на платах или внутри блоков выпрямителя, является не правильной с нашей точки зрения. Существующий опыт показывает, что эти варисторы как правило рассчитаны на токи 7 – 10 кА (форма импульса 8/20 мкС) и по своим параметрам соответствуют третьему классу защиты согласно ГОСТ Р 51992-2002( МЭК 61643-1-98). Как правило, эксплуатирующие организации считают данный тип защиты достаточным и никаких дополнительных мер для повышения надежности работы оборудования не принимают. Однако, при отсутствии дополнительных внешних устройств защиты от импульсных перенапряжений более высокого класса, а так же при возникновении длительных превышений рабочего напряжения питающей сети в данной ситуации возможно возникновение двух типовых аварийных ситуаций:

    a) Токи значительных величин, возникающие при срабатывании установленных внутри модуля варисторов, будут протекать по печатным проводникам плат или проводам внутри блоков выпрямителя по кратчайшему пути к заземляющей клемме стойки. Это может вызвать выгорание печатных проводников на платах и возникновению на параллельных незащищенных цепях наводок, которые в свою очередь приведут к выходу из строя электронных элементов блока выпрямителя. При превышении максимальных импульсных токов, определенных для данного варистора изготовителем, возможно, его возгорание и даже разрушение, что может привести к пожару и механическому повреждению самого выпрямителя (более подробно описано в п.п. 2.1).

    b) Несколько другая ситуация возникает в случае длительного установившегося превышения действующего напряжения в сети над максимальным допустимым рабочим напряжением Uc, определенным ТУ для данного варистора (как правило используются варисторы с Uc = 275 В). Подробно данная ситуация была описана выше (см п.п. 2.2). В результате описанного воздействия появляется вероятность возгорания печатных плат и внутренней проводки, а так же возникновения механических повреждений (при взрыве варистора), что подтверждается статистикой организаций, осуществляющих ремонт выпрямителей.

    Пример таких повреждений показан на рисунке 6.

    5023

    Рис.6

     С точки зрения решения проблем описанных в пункте (а), наиболее правильным является вариант установки защитных устройств, при котором они размещаются в отдельном защитном щитке или в штатных силовых и распределительных щитах электроустановки объекта. Применение внешних дополнительных устройств защиты позволяет защитить выпрямитель от импульсных перенапряжений величиной в сотни киловольт и соответственно снизить до допустимого (7 – 10 кА) значения величины импульсных токов, которые будут протекать через варисторы, встроенные в выпрямитель, или практически полностью исключить их.

    Для защиты оборудования от длительного установившегося превышения действующего напряжения в сети (пункт b) можно использовать устройства контроля напряжения фазы или подобные им (см. рис. 7).

    5024

    Рис. 7 Подключение устройства контроля фаз РКФ-3/1

    [ http://www.energo-montage.ru/pages/top/articles/osobennosti_ekspluatacii_uzip/index_76.html]

    Тематики

    Синонимы

    EN

    3.1.45 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит, по крайней мере, один нелинейный компонент.

    Источник: ГОСТ Р МЭК 62305-2-2010: Менеджмент риска. Защита от молнии. Часть 2. Оценка риска оригинал документа

    3.53 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит по крайней мере один нелинейный компонент.

    Источник: ГОСТ Р МЭК 62305-1-2010: Менеджмент риска. Защита от молнии. Часть 1. Общие принципы оригинал документа

    Русско-английский словарь нормативно-технической терминологии > устройство защиты от импульсных перенапряжений

  • 17 алгоритм

    1. algorithme

     

    алгоритм
    Конечный набор предписаний для получения решения задачи посредством конечного количества операций.
    [ ГОСТ 34.003-90]

    алгоритм
    Конечное упорядоченное множество точно определенных правил для решения конкретной задачи.
    [ИСО/МЭК 2382-1]
    [ ГОСТ Р 52292-2004]

    алгоритм
    Последовательность действий для определенного вычисления
    [ ГОСТ 30721-2000]
    [ ГОСТ Р 51294.3-99]

    алгоритм
    Набор упорядоченных шагов для решения задачи, такой как математическая формула или инструкция в программе. В контексте кодирования речи алгоритмами называют математические методы, используемые для компрессии речи. Уникальные алгоритмы кодирования речи патентуются. Конкретные реализации алгоритмов в компьютерных программах также являются субъектом авторского права.
    Совокупность четко определенных правил, процедур или команд, обеспечивающих решение поставленной задачи за конечное число шагов.
    [ http://www.morepc.ru/dict/]

    алгоритм
    алгорифм
    Точное предписание относительно последовательности действий (шагов), преобразующих исходные данные в искомый результат. Это понятие появилось за много веков до появления компьютеров, с которыми его обычно связывают. Термин же происходит от слова Algorithmi, так на латинском языке звучало имя хорезмского математика IX столетия аль-Хорезми, трактат которого в средние века был распространен в Европе. Тогда алгоритмом называлось десятичное счисление и искусство счета в этой системе. А. — основа решения любой экономико-математической задачи, задачи управления, а также построения многих экономико-математических моделей — особенно прикладных, предназначенных для практических расчетов на компьютерах. Оценка качества А. обычно определяется его сходимостью (если А. не сходится, он не годится), скоростью сходимости (чем она выше, т.е. чем меньше шагов требуется для решения, тем А. лучше); кроме того, важную роль играют время счета на компьютере (оно зависит не только от числа шагов, но и других обстоятельств), удобство обращения к А., возможность работы в режиме диалога человека и ЭВМ. Для наглядности алгоритм, если он относительно прост, можно отобразить в виде блок-схемы (см. рис. А.2). А., записанный таким образом, чтобы его могла выполнять вычислительная машина, называется программой. Рис.А.2 Блок-схема алгоритма вычисления среднего арифметического Среди важнейших (для экономико-математических приложений) видов алгоритмов назовем следующие: Алгоритмитеративный [iterative routine] - см. Итеративные методы. Алгоритм моделирующий. [simulator] - алгоритм (компьютерная программа), имитирующий при исследовании сложных систем взаимодействие элементов процесса и позволяющий при заданной совокупности экзогенных величин (параметров, управляющих переменных) получить эндогенные величины (выходы) или их искомые характеристики. Алгоритм циклический [cyclical algorithm] - алгоритм, при котором через какое-то (обычно большое) число шагов результаты начинают повторяться. Таков, например, А. вычисления на компьютере псевдослучайных чисел. Алгоритм управления [control procedure] - точно определенный порядок выработки управленческих решений, формирования планов, обмена информацией в процессе управления. Тщательная отработка А. у. — необходимый этап проектирования любой АСУ. Для проверки А.у. эффективно применение методов машинной имитации.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > алгоритм

См. также в других словарях:

  • мера величины влажности — мера влажности Средство измерений, воспроизводящее заданное значение какой либо величины влажности с необходимой точностью. Примечание В этом термине вместо общего элемента «величина влажности» следует применять наименование… …   Справочник технического переводчика

  • Термодинамические величины — Термодинамические величины …   Википедия

  • вид электронного датчика [преобразователя физической величины] — Электронный датчик [преобразователь физической величины], предназначенный для измерения [контроля] и преобразования конкретной физической величины. [ГОСТ Р 51086 97] Тематики датчики и преобразователи физических величин …   Справочник технического переводчика

  • ЗНАЧЕНИЕ ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ — оценка конкретной физ. величины в виде произведения отвлечённого числа, наз. числовым значением величины, на принятую для неё единицу. Различают истинное 3. ф. в., к рое стремятся найти в соответствии с поставл. измерит. задачей, и действит. 3. ф …   Большой энциклопедический политехнический словарь

  • Пенсия — (Pension) Пенсия это регулярное денежное пособие, выплачиваемое лицам, имеющим инвалидность, достигшим пенсионного возраста, либо потерявшим кормильца История возникновения пенсии, пенсии в РФ, пенсия по старости, пенсия по инвалидности,… …   Энциклопедия инвестора

  • Кривая видового накопления — графическое представление числа видов, найденных на определенной территории (или в определенном биотопе и т. п.), как функции от кумулятивной совокупности исследовательских усилий, направленных на их нахождения. Исследовательское усилие может… …   Википедия

  • Распределение Парето — Плотность вероятности …   Википедия

  • Волка TR-3 — Звезда Наблюдательные данные (Эпоха J2000.0) Прямое восхождение …   Википедия

  • Введение в квантовую механику — Содержание 1 Вероятность 2 Соотношение неопределённостей 3 …   Википедия

  • Волк-TR-3 — Lupus TR 3 Звезда Наблюдательные данные (Эпоха ) Прямое восхождение …   Википедия

  • дефицит влажности — Нрк. дефицит насыщения Разность между какой либо величиной влажности в данном веществе и той же величиной при насыщении влагой этого вещества при тех же внешних условиях, выражаемая в единицах исходных величин. Примечание В этом термине вместо… …   Справочник технического переводчика

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»